Riparian response to an Alternative Arrow Reservoir operational regime in the Upper Columbia

Future of our Salmon Conference 2016, Portland OR
October 18, 2016

Alan Thomson MRM P.Eng.
Mountain Station Consultants, Nelson, British Columbia
Canadian Columbia River Watershed

- 15% of Columbia R. watershed area
- 30-35 % of runoff for entire Basin
- Up to 50% of floodwaters
- Three CRT reservoirs
Arrow Lakes Reservoir

150 miles long (same as Lake Roosevelt behind Grand Coulee dam)

Full pool area of 179 square miles (43 % larger than LR)

Live storage 7.1 million acre-feet (36 % greater than LR)
Arrow Lakes Pre-Regulation

1922-1968
Average fluctuation 21 ft.
Hugh Keenleyside Dam Inauguration Late 1960’s
Arrow Lakes Pre and Post Regulation

1970-2013
Average fluctuation 41 ft.

1922-1968
Average fluctuation 21 ft.
Arrow Reservoir Ecosystem Impacts

- Lakes: 86,467 acres
- Wetlands/ Ponds: 8,735 acres
- Rivers/Floodplains: 21,866 acres (69 miles)
- Streams: 128 acres (58 miles)
- Uplands: 9,500 acres

From: Utzig and Schmidt 2011
• Inspired by Arrow Lakes residents
• Commissioned and funded by the Province of British Columbia.
• Examined only Arrow Lakes Reservoir footprint
Assessment Criteria

- Vegetation
- Wildlife
- Fish and aquatic resources
- Recreation
- Agriculture
- Erosion
- Archaeology
- Commercial navigation
- Power Generation
- Flood Storage
Hypothesis: Many Arrow values are directly influenced by the health of the Riparian Zone
Photos Credit: Arrow Lakes Historical Society.
Mature Riparian Establishment and Maintenance

Flood Frequency: 1 in 7 years average

Inundation duration: up to 35 days
Scenario 1: Stable elevation 4 in 5 years at 1,425 ft.
Scenario 1: Stable elevation 4 in 5 years at 1,425 ft.
Scenario 1: Flood up to full pool 1 in 5 years
Scenario 2: Stable elevation 6 in 7 years at 1,420 ft.
Scenario 2

Scenario 2: Stable elevation 6 in 7 years at 1,420 ft.
Scenario 2: Flood up to full pool 1 in 7 years
Scenarios 1 & 2

Scenario 1: Stable elevation 4 in 5 years at 1,425 ft.
Scenario 1: Flood up to full pool 1 in 5 years

Scenario 2: Stable elevation 6 in 7 years at 1,420 ft.
Scenario 2: Flood up to full pool 1 in 7 years
Scenarios 1 & 2

- **Scenario 1:** Stable elevation 4 in 5 years at 1,425 ft.
- **Scenario 1:** Flood up to full pool 1 in 5 years
- **Scenario 2:** Stable elevation 6 in 7 years at 1,420 ft.
- **Scenario 2:** Flood up to full pool 1 in 7 years

35 days
Positive effect

• Increase in riparian vegetation above the stable elevation (S2>S1)
• Increase in shallow water biological productivity and diversity
• Increase in terrestrial wildlife habitat and ungulate winter range.
• Less bird nest flooding; better wildlife access to wetlands
• improved white sturgeon spawning and incubation habitat conditions

• Improved access to recreational sites; improved boating
• Improved commercial navigation and operations on the reservoir.
• Decreased dust generation
• Increased agricultural opportunities.
• Reduced shoreline erosion
Uncertain/Mixed

- Affect on pelagic (deep water) fish
- Fish spawning habitat and migration in lower reaches of tributaries (positive for S2)
- Aquatic ecosystem productivity in Revelstoke Reach (compounded by Revelstoke Dam peaking operation)
- Conservation of archaeological sites; some better; some worse.

Neutral effects

- Annual power generation from 185 MW Arrow Lakes Generation Station (S1 slightly positive)
- Burbot spawning and egg incubation
Negative effects

- Reduced flood storage capacity (0.9 - 2 million acre ft less than recent operations.

- Increase in aquatic plants that invasive fish species favor.
Conclusions

Scenario Comparison with Existing Operations

<table>
<thead>
<tr>
<th>Vegetation</th>
<th>Scenario 1</th>
<th>Scenario 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terrestrial</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Wetland</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Wildlife</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herptiles</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Songbirds</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Water/shoreline birds</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Mammals</td>
<td>0</td>
<td>+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fisheries</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pelagic productivity</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Pelagic fish</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Tributary access</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>Tributary spawn/rear</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Littoral habitat</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Macrophytes & Invasive spp.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Large River Productivity</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

+ relative benefits - relative negative impacts o changes are neutral ? effects uncertain
Conclusions
Scenario Comparison with Existing Operations

<table>
<thead>
<tr>
<th>Fishes (cont’d)</th>
<th>Scenario 1</th>
<th>Scenario 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burbot & sturgeon</td>
<td>o/+</td>
<td>o/+</td>
</tr>
<tr>
<td>Recreation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boating</td>
<td>+/0</td>
<td>+/0</td>
</tr>
<tr>
<td>Shoreline</td>
<td>++/-</td>
<td>++/-</td>
</tr>
<tr>
<td>Terrestrial</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Agriculture</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Erosion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoreline</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Mass Wasting</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Archaeology</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+/-</td>
<td>++/?</td>
</tr>
<tr>
<td>Commercial Navigation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>ALGS Power Generation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>o</td>
</tr>
<tr>
<td>Flood Storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- -</td>
<td>- - -</td>
</tr>
</tbody>
</table>

+ relative benefits - relative negative impacts o changes are neutral ? effects uncertain
http://blog.gov.bc.ca/columbiarivertreaty/